kinetic energy = $\frac{1}{2}$ × mass × speed ²	$E_{K} = \frac{1}{2}mv^{2}$
GPE = mass × gravitational field strength × height	$E_P = mgh$
power = $\frac{\text{work done}}{\text{time taken}} = \frac{\text{energy transferred}}{\text{time taken}}$	$P = \frac{W}{t} = \frac{E}{t}$
$\begin{array}{l} \text{efficiency} = \frac{\text{useful energy output}}{\text{total energy input}} \\ \text{efficiency} = \frac{\text{useful power output}}{\text{total power input}} \end{array}$	
elastic potential energy = $0.5 \times \text{spring constant } \times (\text{extension})^2$	$E_e = \frac{1}{2}ke^2$
change in thermal energy = mass × specific heat capacity × temperature change	$\Delta E = mc\Delta\theta$

charge flow = current × time	Q = I t
potential difference = current × resistance	V = I R
total resistance = resistance of component 1 + resistance of component 2	$R_T = R_1 + R_2$
power = current × potential difference	P = I V
$power = (current)^2 \times resistance$	$P = I^2 R$
energy transferred = power × time	E = Pt
energy transferred = charge flow \times potential difference	E = QV

density = $\frac{\text{mass}}{\text{volume}}$	$ \rho = \frac{m}{V} $
change in thermal energy = mass × specific heat capacity × temperature change	$\Delta E = mc \Delta \theta$
thermal energy for a change in state = mass × specific latent heat	E = mL
for a gas: pressure × volume = constant	pV = constant