Systems ARCHITECTURE

FXFCUTF

REVISION

You should learn

what each register

does and its role in

1.1.1 ARCHITECTURE OF THE CPU

The purpose of the CPU:

- The fetch-execute cycle
- Data and instructions FETCHED from main memory
- -They are then **DECODED** and **EXECUTED**
- This is carried out in a continuous cycle

Common CPU components and their function:

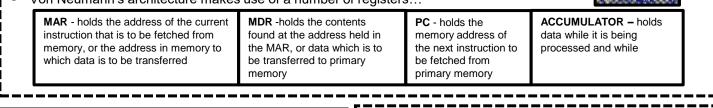
- ALU [Arithmetic and Logic Unit]
- CU [Control Unit]
- Cache
- Registers

Von Neumann Architecture:

- MAR (Memory Address Register)
- MDR (Memory Data Register)
- **Program Counter**
- Accumulator

finished. Intermediate results are stored in the accumulator Cache is VERY FAST memory.

ALU performs calculations and logic checks.


FETCH

Instructions that are carried out frequently are stored there so that they do not have to be FETCHED [saving time]

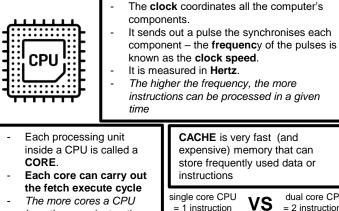
It may take several F-E-Cycles for a calculation to be

DECODE

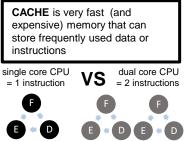
- Registers = small amounts of high-speed memory contained within the CPU. Registers store data that is needed during the F-E-C
- _____ John Von Neumann was a Hungarian mathematician who developed the idea that a computer could be used for many purposes and not just one.
- This was called the stored program concept.
- A processor based on Von Neumann's architecture would use memory to store data and instructions and would use the fetch execute cycle to retrieve and process instructions. Von Neumann's architecture makes use of a number of registers...

1.1.2 CPU PERFORMANCE

How common characteristics of CPUs affect their performance:


- Clock speed
- □ Cache size
- Number of cores

1.1.3 EMBEDDED SYSTEMS


The purpose and characteristics of embedded systems

Example of embedded systems

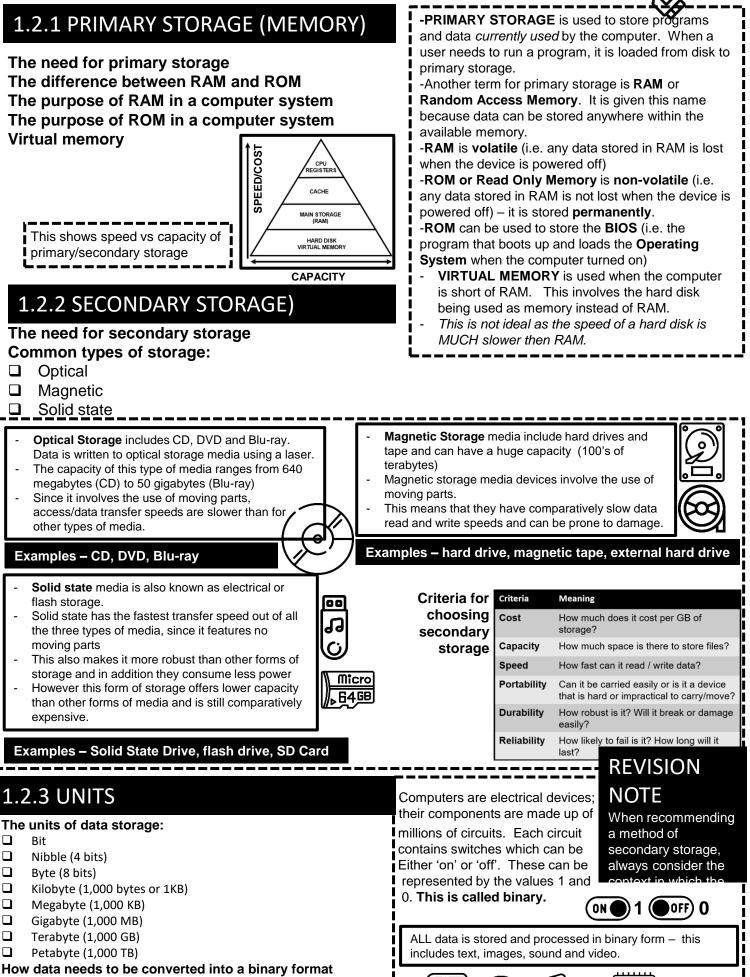
- Embedded systems are small computer systems
- built inside larger devices or pieces of equipment
- They are designed to do one specific task (rather
- than range of task)
- Embedded systems have a simple user interface
- In addition, the software used to control or run the system is also very basic

has, the more instructions it can process in a given time (i.e. PARALLEL PROCESSING)

ONE TASK

CAN DO

MANY TASKS


WHICH OF THESE ARE ARE NOT Embedded DOES DOES Systems?

ONE TASK

[©] J Bridgeman 2020

MEMORY AND STORAGE

to be processed by a computer Data capacity and calculation of data capacity requirements

1.2.4 DATA STORAGE

Numbers

- How to convert positive denary whole numbers to binary numbers (up to and including 8 bits) and vice -versa
- How to add two binary integers together (up to and including 8 buts) and explain overflow errors which may occur
- How to convert positive denary whole numbers into 2digit hexadecimal numbers and vice versa
- How to convert binary integers to their hexadecimal equivalents and vice versa
- Binary shifts

Characters

- The use of binary codes to represent characters
- The term 'character set'
- The relationship between the number of bits per character in a character set, and the number of characters which can be represented, e.g.:
 - ASCII
 - Unicode

Every character (letters, numbers, symbols) sent to the computer or typed in, is stored as 7-bit binary code. For example, if the user types in the message below, **H** is represented by the number '072'. This character set is called **ASCII**

UNICODE uses 16 bits to allow an even wider range of characters to be stored, including one used for foreign languages:

Images

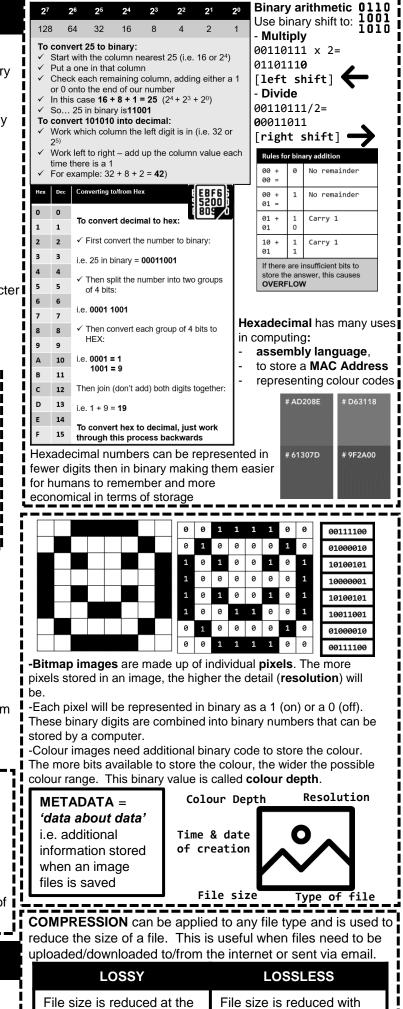
- How an image is represented as a series of pixels, is represented in binary
- Metadata
- The effect of colour depth and resolution on:
 - The quality of the image
 - The size of a sound file

Sound

- How sound can be sampled and stored in binary form
- The effect of sample rate, duration and bit depth on;
 - The playback quality
 - The size of a sound file

Sound waves are **ANALOGUE** and must be converted in to **DIGITAL** (0's and 1's) in order to be stored/ processed by computer. This is called **SAMPLING**.

-The height of a sound wave is its **AMPLITUDE**.


-The SAMPLE RATE is the number of

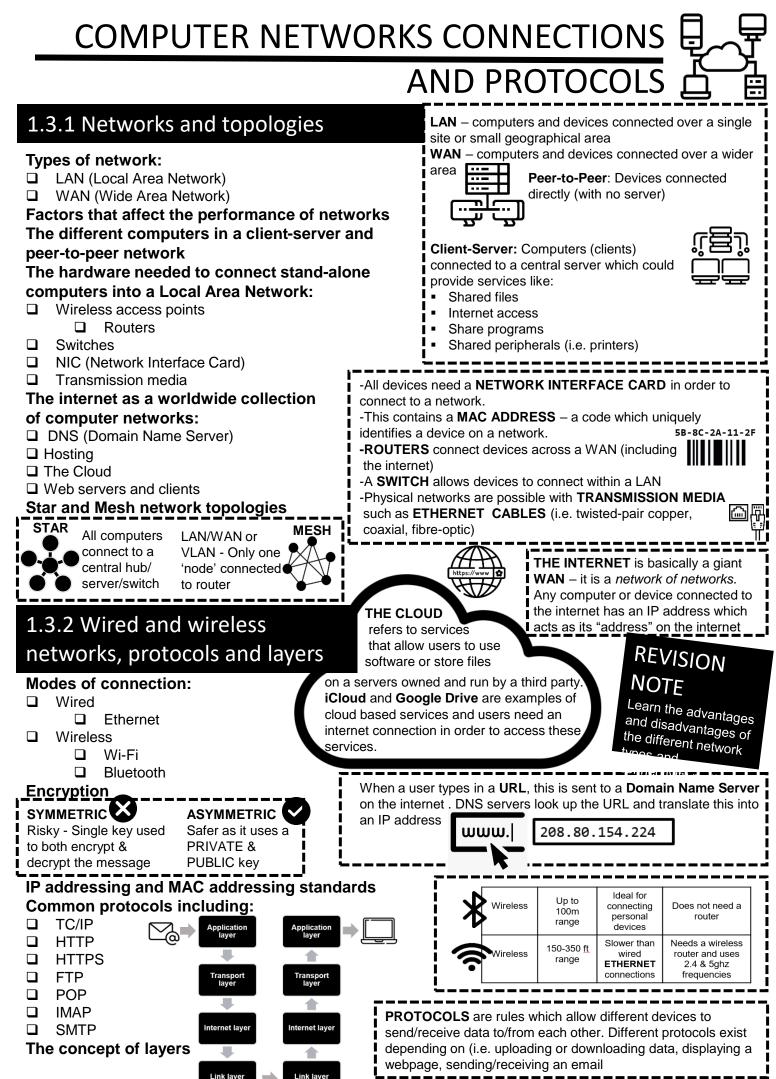
- samples captured per second.
- -SAMPLE RESOLUTION is the number of bits used to capture the sound

1.2.5 COMPRESSION

The need for compression

- The need for compression
- Types of compression;
 - Lossy
 - Lossless

no loss of quality

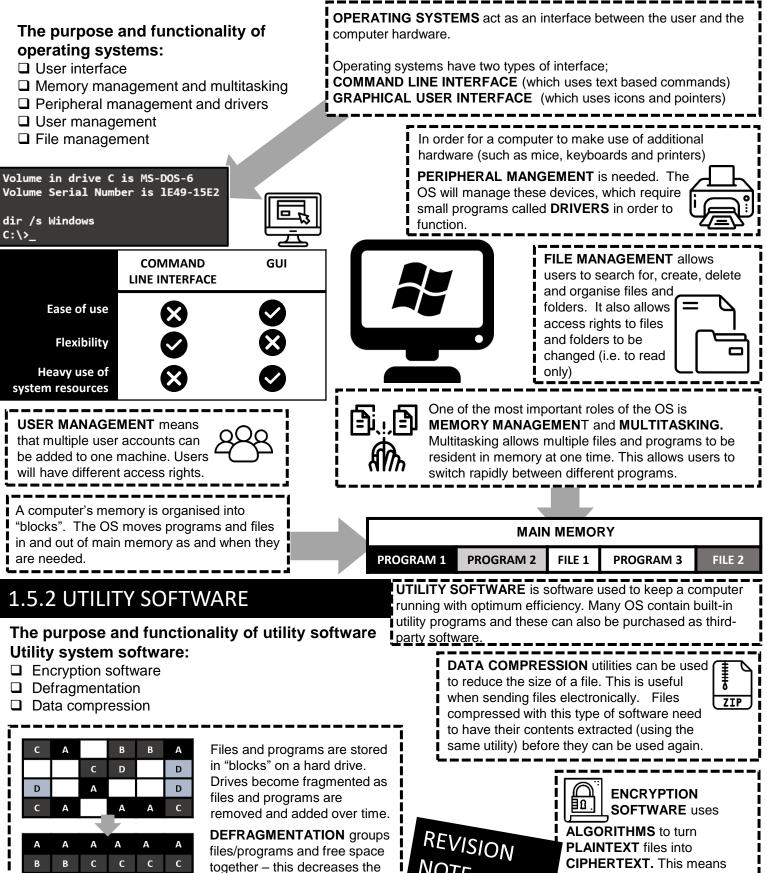

(.BMP)

(.FLAC)

expense of quality

 \sim

<u>[n]</u>



1.4 NETWORK SECURITY

1.4.1 THREATS TO CO SYSTEMS AND NETW				
 Forms of Attack: Malware Social engineering, e.g. p as the 'weak point' Brute-force attacks Denial of service attacks Data interception and thef The concept of SQL inject BRUTE FORCE ATTACKS involve to guess a users password using tria may use a computer program to do try millions of combinations very qui	t tion a hacker attemptional-and-error. They this, since it could	could become info or TROJAN - Malware is often that have been illo SOCIAL ENGINEER weaknesses in order can be done in a nur	puter. A compu ected by a VIRU hidden inside of egally) RING involves e r to gain entry to	tter or system JS, WORM
sent by criminals and are designed to steal money or login details. - They contain links or attachments which, if clicked on or downloaded, allow the criminal to access what they want	Issues ring problems taking pa . Please click <u>here</u> to en	HOW CAN YOU SPOT A EMAIL? -Spelling mistakes -Suspicious origin email a - Impersonal (i.e. no name - Asks for personal inform - Contains links or attache ment using the server of nter your current bank details	address e used) nation	DoS (DENIAL OF SERVICE) attacks are designed to "crash" a network or website. Criminals do this by bombarding it with so much 'traffic' that it cannot function properly.
Other methods of DATA INTERCE and THEFT could be non – technic example, SHOULDERING (looking someone's shoulder when they ent or finding private information (like lo details) on discarded documents) 1.4.2 IDENTIFYING AN PREVENTING VULNER	al; for codec over datab er data) a web ogin a web	INJECTION can be used to d websites. A hacker could ase language called SQL to osites database (for example e shopping site) by typing So o form.	use a o gain entry to e, on an QL code into	Learn the differences between the different forms of malware and make sure that you are clear about how they spread and what offects they might ABLE 'users' (
 Common prevention m Penetration testing Anti-malware software Firewalls User access levels Passwords Encryption Physical security 	Companies can try and find weal systems. This is PENETRATION FIREWA software data pac	s called	PHY meth secu doors doors ANTI- can se viruse to dat	SICAL SECURITY includes nods such as use of CCTV, rity guards and locked
Network administrators can set of of USER ACCESS LEVELS – fo some users may be able to insta while others may only be able to © J Bridgeman 2020	r example, Il software,	Users should be made to s containing combinations of could also protect their files	numbers, letter	rs and characters. Users

1.5 SYSTEMS SOFTWARE

1.5.1 OPERATING SYSTEMS

D

D

load/saving.

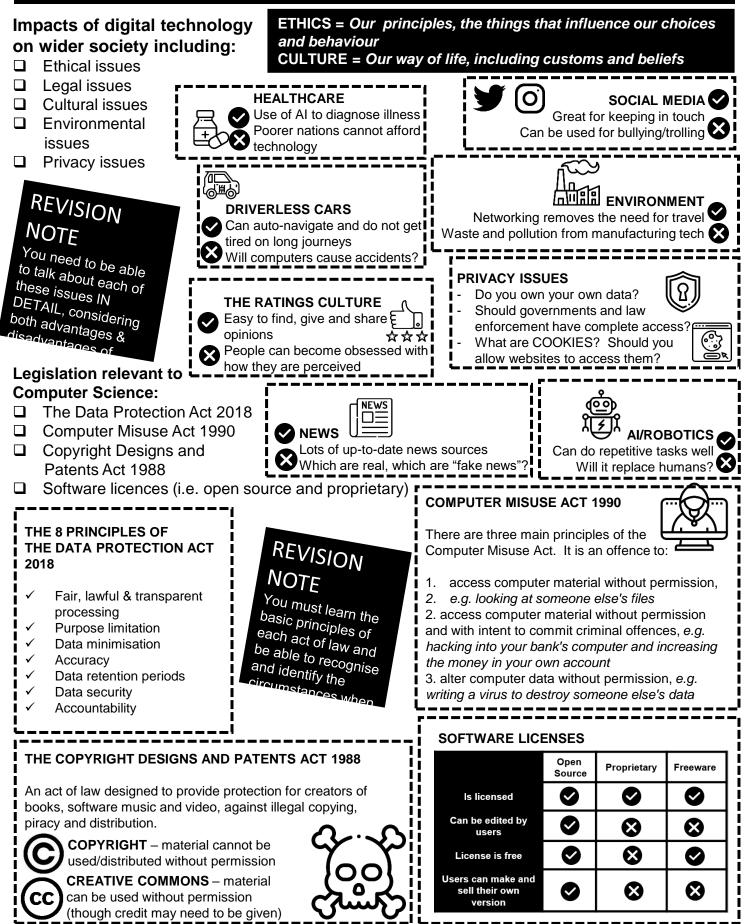
NOTE time that the disk has to spend SSD's do NOT need to be defragmented since electrical storage works

that the contents of an

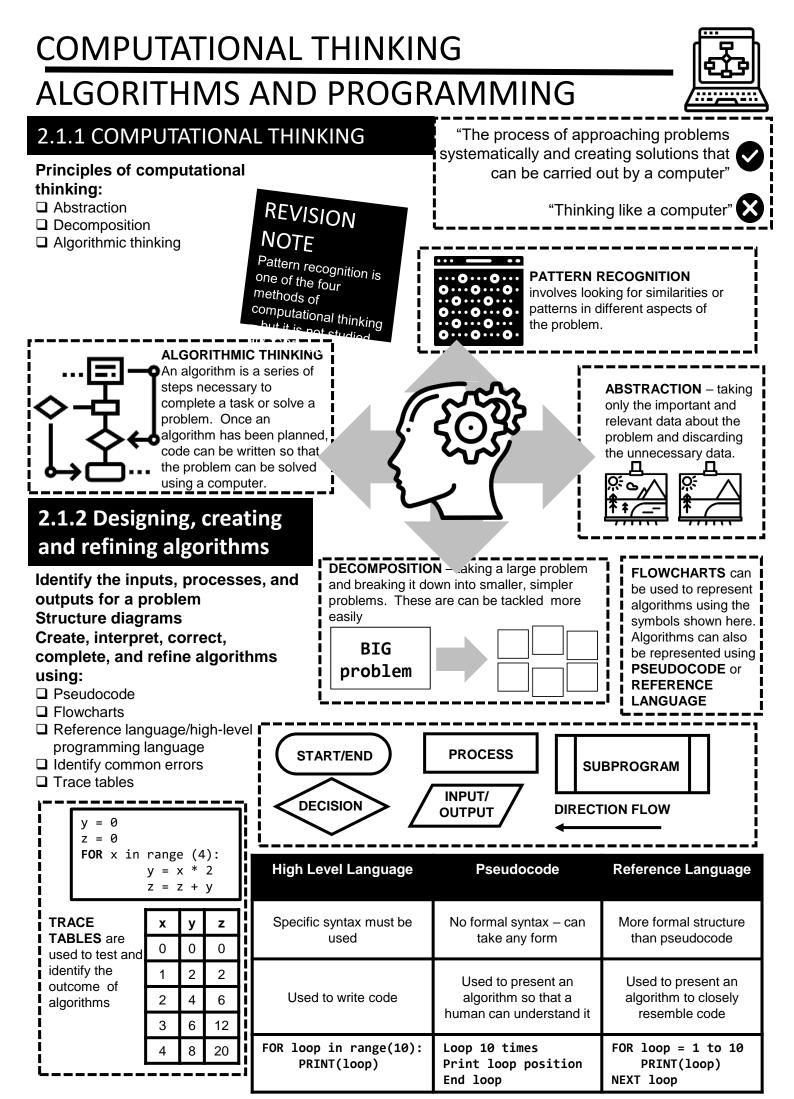
was used to encrypt it.

encrypted file cannot be read

without the use of the KEY that


D

ETHICAL, LEGAL, ENVIRONMENTAL



IMPACT

1.6.1 ETHICAL, LEGAL, and ENVIRONMENTAL IMPACT

© J Bridgeman 2020

2.1.3 SEARCHING AND SORTING

Standard searching algorithms:

 Binary search Linear search 	<pre>INPUT item to be searched for found = False numbers = [4,2,6,1,5,3] REPEAT</pre>
A BINARY SEARCH requires data to be sorted in order before it can be searched. A LINEAR SEARCH does not –the algorithm will look at every item in list until it either locates the data or reaches the end of the list. The binary search is the more efficient of the two	Compare item with current item in list IF current item is the item searched for then found = True UNTIL end of list OR found = True IF found = True PRINT ("Item found") ELSE PRINT ("Item not found")
 Standard sorting algorithms: Bubble sort Merge sort Insertion sort 	REVISION NOTE You need to be familiar with searching sorting algorithms but there is no need for you to be able to code them
 -A BUBBLE SORT is an algorithm for sortir -The algorithm works by going through a list unordered data and evaluating the data in p -If two data items are in the wrong order the exchanged. -The algorithm then moves to the next pair. -When the algorithm reaches the end of the process will be repeated until all data has be correctly. This might take SEVERAL PASS the data. 	Ing data. STARTING DATA 4 2 6 1 5 3 It of bairs. Items 1 & 2 2 4 6 1 5 3 2>4 so SWAP By are Items 2 & 3 2 4 6 1 5 3 2>4 so SWAP Idata, the even sorted Items 3 & 4 2 4 1 6 5 3 1<6 so SWAP
 -A MERGE SORT is a DIVIDE AND CONQUE -First of all, the items of data in a list are divident each item is in a SUBLIST of one item. (This stage) -The algorithm will then merge each sublist, sorting them as appropriate. -When all of the data has been merged backwill be in the correct order. (This is the CON - Merge sorts are more efficient than bubble 	ded in half until 4 2 6 1 5 3 is the DIVIDE 4 2 6 1 5 3 after comparing and 4 2 6 1 5 3 CONCUER into a single list it 2 4 1 6 3 5 G F IQUER stage) 1 2 4 3 5 6 F F
-An INSERTION SORT is more efficient than a bubble sort. -The insertion sort works in a similar way to sorting a hand of cards. -The algorithm works by comparing the current data item with the other items in the list - If the data item is in the wrong	Unsorted list $\begin{array}{c cccc} 4 & 2 & 6 & 1 & 5 & 3 \\ \hline & & & \\ & $
 in the correct place. This continues until all the items of data are in the correct 	be inserted (4 is already in the correct place)1234655 inserted at the front of the list123456be inserted (6 is already in the correct place)123456

PROGRAMMING FUNDAMENTALS

2.2.1 Programming fundamentals						
The use of variables, constants, operators, inputs, outputs and assignments The use of the three basic programming constructs used to control the flow of a program:			ners can label a	a varia nory loo	ble using cation (ai	d to store data. an IDENTIFIER . nd the value of the mmer.
 Sequence Selection Iteration (count- and condition-controlled loops) The common arithmetic operators 	- 1	be can be		lue dire	ectly by t	SIGNING. Variables he programmer or ogram.
The common Boolean operators AND, OR and NC There are three main "constructs" used in high level language programming – SEQUENCING, SELECTION	<u></u> יון:	statement of a variat	can be used to ble.	o displa	ay specif	UT data – a print ic text or the contents
and ITERATION. SEQUENCING involves a block of code that executes line after line (in sequence) :			<pre>name = input print ("Hell</pre>			nter your name")
<pre>print("Good morning") name = input("What is your name?") print("Hello",name)</pre>			STANTS are sind does not chang		• •	e to variables, but their he program
<pre>age = int(input("How old are you?")) print(age,"is a very good age!")</pre>	il.	<u> </u>	const Pi = 3	3.142		
SELECTION involves the use of IF statements to evaluate the contents of a variable - program will execute different code depending on the value of the variable		ATHEMA DPERATO alculation using varia	RS allow s to be perform	ned	used wh	AN OPERATORS are nen making logical sons (i.e. when using IF nts)
<pre>question = input("Do you enjoy programming?"))</pre>		onstants	A 1 122		NOT	Addition
<pre>if answer == "yes": print("Awesome!")</pre>	ij	+	Addition		AND	Subtraction
ITERATION is used to repeat (loop) a block of code.	ij	-	Subtraction	4	OR	Division
This is a more efficient way of programming then to add the same code multiple times. There are two types of		/	Division		!=	Not equal to
iteration; a count controlled loop runs a block of code a SET number of times;	ij	DIV	Multiplication		==	Equal
for count in range (1,10):	ij		Integer division		<	Less than
<pre>print("I have counted to", count) a condition controlled loop runs a block of code until a</pre>		MOD	Modulus (remainder)		> <=	Greater than Less or = to
specific condition is met – for example, a program could ask for a password until it is entered correctly.	<u>ii</u>	^	Exponent		>=	Greater than or
<pre>correct = False while correct == False password = input("Enter your password' if password == correctpassword: correct = True</pre>	')		DATA TYPE Integer		PLANATION	HIGH_SCORE =
2.2.2 DATA TYPES			Float/ Real	A *fra numb	actional" Der	RANK = 10 PI = 3.141 TEMPERATURE = 21.5
he use of data types:Constants and variables canIntegeras a range of DATA TYPESRealpossible to use CASTING toRealfrom one type to apother:	It is	also	Character	A sing charao (letter, symbol	ter Number	21.5 INITIAL = "J" GRADE = "A"
<pre>Boolean Character and string Casting Casting from one type to another: NumberString = "42" Number = int(NumberStr pi = 3.141</pre>	ing)		+	Zero or characte	ers	NAME = "Arthur Dent" PASSWORD =
pi = 5.141 pi = int(pi) print(pi) 3 >_			1 '	Can be e RUE or ALSE	ither F	"FISH42*" PERMISSION = True PORRECT = False
©. Bridgeman 2020			-			

2.2.3 Additional programming techniques

The use of basic string manipulation

The use of basic file handling operations:

- Open
- Read
- Write
- Close

The use of records to store data

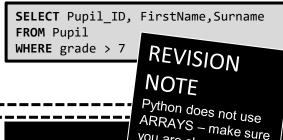
The use of SQL to search for data

The use of arrays (or equivalent) when solving problems,

including both one-dimensional and two-dimensional arrays How to use sub programs (functions and procedures) to

produce structured code

Random number generation


Data can be imported to/exported from programs using FILES. This means that a program can keep its data, even when it is closed and reopened. A range of FILE HANDLING OPERATIONS are possible..

open	Prepares the file ready for use	
close	Close access to the file when it is no longer needed	
read	Retrieve data from the file	
write	Overwrite the file with new data	
append	Save new data onto the end of the file	

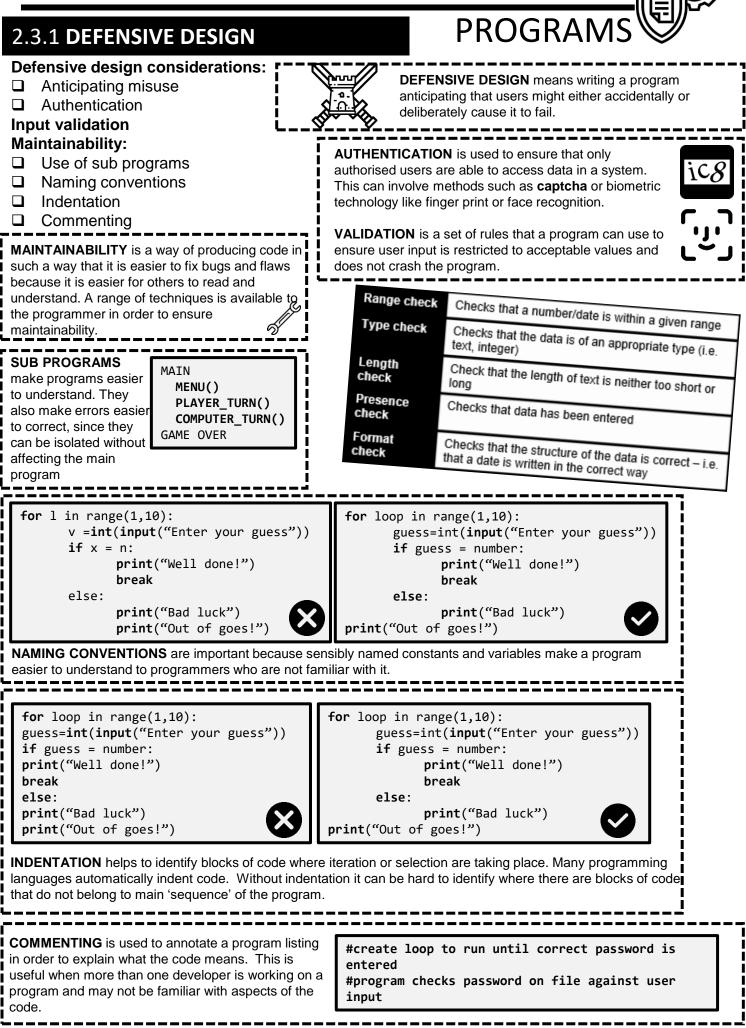
STRING MANIPULATION Many programming languages (including	Description	Example	Result		
	Length	length = len(name)	17		
Python) have built-in functions allow	Convert to upper case	<pre>capitals = name.upper()</pre>	ZAPHOD BEEBLEBROX		
programmers to manipulate strings.	Convert to lower case	<pre>small = name.lower()</pre>	zaphod beeblebrox		
	Return a substring	<pre>name.substring(0,2)</pre>	Zap		
There are a wide number of ways in which strings can be manipulated – a few are examples are given in the table for this example: name = "Zaphod Beeblebrox"					

DATABASES are used to organise and structure data. In a database, data is stored in on a table - each row holds a RECORD and each column (FIELD) refers to different aspect of the data. SQL (STRUCTURED QUERY LANGUAGE) is a language used to build, edit

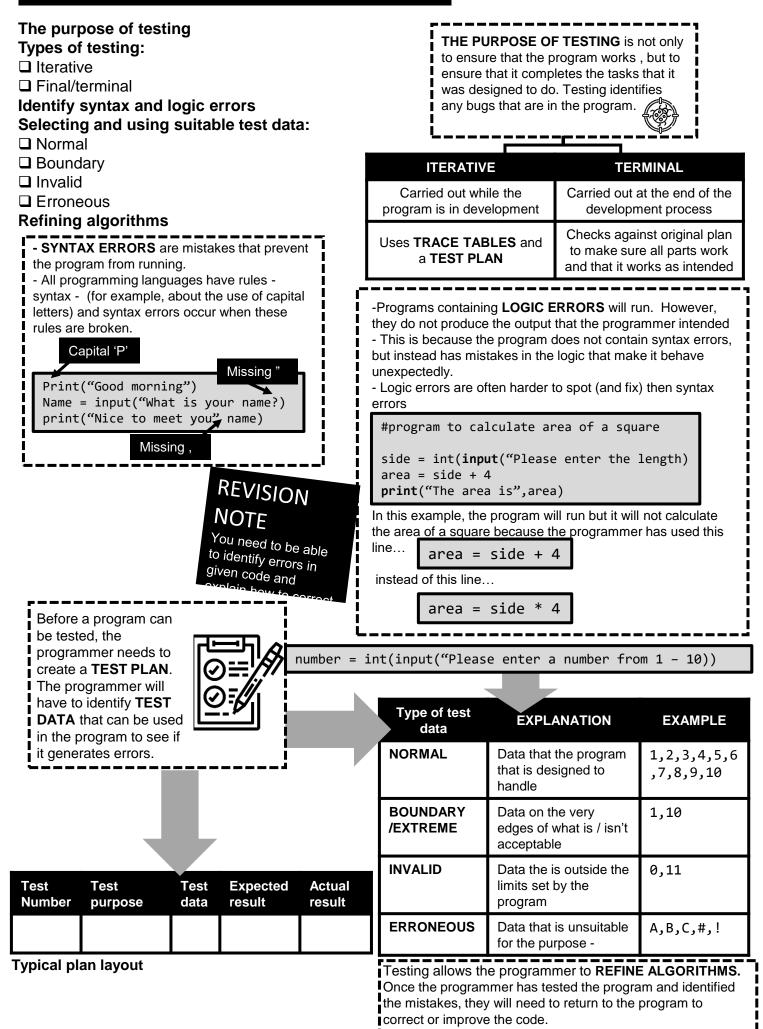
and interrogate databases.

PUPIL					
Pupil _ID	First Name	Surname	Mentor	Mark	Grade
1012	Ford	Prefect	HG5	80	8
0981	Tricia	McMillan	HG7	95	9
1422	Arthur	Dent	HG1	55	6
1012 F	ord Pref	ect			

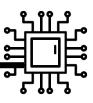
0981 Tricia McMillan


_	ARRAYO				
	ARRAYS – make sure You are clear about how they differ from	LIST	ARRAY	2 Dimensional Array	While variables store individual pieces of data ARRAYS are data structures
Ì	Data Structure			\mathbf{O}	which store related items of
ļ	Can contain mixed data types	\bigcirc	\mathbf{S}	8	data.
i	Size can be changed after it has been defined		\mathbf{S}	\mathbf{x}	PupilName = {"Ford", "Tricia", "Arthur"} NameAndMark = {"Ford", 80,
ļ	Arranges data in row and columns	$\boldsymbol{\otimes}$		\bigcirc	"Tricia", 95, "Arthur", 6}

ClassTests [20,10]


SUBPROGRAMS are "programs within programs"	Description	PROCEDURE	FUNCTION
and perform a specific function	Example of a subprogram		Ø
within a larger program. Using subprograms allows larger programs to be broken down	Needs to be called from the main program		
	Can have parameters passed into it		Ø
into smaller parts making them easier to design, test and understand.	Can return values back out to the main program	8	0

Programming languages have built-in functions that can be **dice_roll = random (1,6)** used to generate "RANDOM" numbers.


2.3 PRODUCING ROBUST

2.3.2 TESTING

2.4 BOOLEAN LOGIC

)OFF

2.4.1 BOOLEAN LOGIC

Computers are made up of circuits containing Simple logic diagrams using the operators "AND", "OR" AND "NOT" Truth tables


Combining Boolean operators using "AND", "OR" and "NOT" Applying logical operators in truth tables to solve

problems

millions of switches. As electrical switches have two possible values (ON or OFF), these values can be represented (ON C using binary values 1 or 0. Each circuit contains logic gates and BOOLEAN LOGIC is used to evaluate the results of different

combinations of 1's and 0's.

There are a number of different logic gates which produce different results when they receive inputs (1's and 0's.)

Programming Languages

2.5.1 LANGUAGES

Characteristics and purpose of different levels of programming language:

- High-level languages
- Low-level languages
- The purpose of translators

The characteristics of a compiler and an interpreter

HIGH LEVEL LANGUAGES have different purposes - for example, games are often written in JAVA while PYTHON is used for scripting, LOW LEVEL LANGUAGES are used for writing device drivers and programs that interact with the hardware.

REVISION NOTE

You are not expected to be able to program in a low level language, but it is important that you are aware of the differences between low and high level

shows what happens when the

code is executed

	Language	Syntax	Translation	Hardware dependent?	Exampleguages and how they are used
LOW	Machine Code	Data and instructionsDoes need to bemade up of 1'stranslatedand 0's		YES (unique to each processor type)	11000101 11100101 11001101 11010101 01010111 11001000
LEVEL	Assembly Language	Mnemonics/ symbols	nemonics/ translates to one	YES (unique to each processor type)	MOV1 #5B #6A LDA1 #6A
HIGH LEVEL	Python, JAVA, C++, Visual Basic	Resembles human language	One statement translates into many machine code instructions	NO – transferrable and usable on any computer	print("Hello, world")

All programs are executed in machine code – this means that any program now written in machine code needs to be translated into this form. Software called **TRANSLATORS** is used to convert High Level Languages or Assembly Language into machine code. There are two types of translator – **COMPILERS** and **INTERPRETERS**. **SOURCE CODE** is the language that the program was written in. When this is compiled into **OBJECT CODE** it creates an **EXECUTABLE** file that can run on any computer without the use of a compiler.

	COMPILER	INTERPRETER	
How does translation take place?	Compiles High Level Language programs into machine code when the program is complete	Translates the program as it being written – translation wi only take place on correct co	NOTE Assemblers are
Produces object code?	Ø	⊗	another form of translator which do
			The RUN -TIME ENVIRONMENT

2.5.2 THE INTEGRATED DEVELOPMENT ENVIRO

NEW RUN DEBUG **Common tools and facilities IDE's (INTEGRATED** available in an Integrated DEVELOPMENT 1 name = input("Name?") **Development Environment EVIRONMENTS)** allow 2 print('Hi ',name (IDE): programmers to WRITE, EDIT, 3 Editors **EXECUTE** and **TRANSLATE** SYNTAX 4 their code Error diagnostics 5 ERROR Run-time environment 6 Translators AN EXAMPLE IDE ERROR DIAGNOSTICS identify any errors picked up during the The EDITOR allows the programmer to enter/edit code and compilation process - the IDE will may provide tools like auto-indenting, colour coding also TRANSLATE the code. variables and commands, and adding line numbers.